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SUMMARY 

An analysis of the unsteady-state heat-conduction problem in isotacho- 
phoretic columns of circular cross-section is given, based on a linear variation of 
electrical conductivity with temperature and taking into account the effects of a 
finite wall thickness. It is seen that previous analyses, based on constant electrical 
conductivity, tend to underpredict actual temperature distributions considerably. 
The use of thick-walled columns is seen to be advantageous both from the viewpoint 
of higher resolution and of increased production. 
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INTRODUCTION 

Joule heating, caused by the passage of current through an electrophoresis 
column, produces radial temperature gradients in which the temperature ‘is highest 
at the axis of the column and declines toward the periphery. A precise determination 
of radial temperature distributions is essential for two very important reasons. First, 
because ionic mobilities are temperature dependent (increasing ,about 2%/“K), a 
radial temperature distribution produces variations in migration velocity across the 
tube, thus causing “bowing” of the frontal (ionic species interface) regions. Secondly, 
in the case of living cells relatively small temperature changes can be tolerated over 
the cross-section of the column if cell damage is to be avoided (0 to 37°C when using 
an aqueous solvent). This requires the solution to the transient heat-conduction prob- 
lem as the system must be designed in such a way that the time required for separation 
is less than the time required for the system to reach this critical temperature at which 
cell destruction begins. 

We consider the isotachophoresis to occur in a glass-walled column of circular 
cross-section. The voltage drop along the tube.is assumed to be independent of the 
temperature and hence of the radial location. It follows that the current density is 
then a function of radial location because of the temperature dependence of the elec- 
trical conductivity. 

The present solution is based on the following assumptions. 
(1) Convective effects may be ignored ; 
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(2) The fluid supporting medium is essentially at rest with the various ionic 
species drifting through it in the axial direction: 

(3) The thermal properties (density, specific heat and thermal conductivity) 
are independent of temperature; 

(4) The electrical conductivity is a linear function of the temperature over the 
range of temperatures of interest; 

(5) The temperature distribution may be obtained as the solution of a conduc- 
tion problem involving only the radial coordinate and time. 

Some further comments are in order with respect to these-assumptions. 
Assumption 5 will be a good approximation in any longitudinal (axial) region 

sufficiently far away from any fronts where it is obvious that strong longitudinal 
temperature gradients must exist. It may be argued that it is precisely in the region of 
the fronts that we wish to determine the effects of non-uniformities in the temperature 
distribution. However, the present approach is a legitimate first step towards the more 
general problem and certainly should permit a first-order estimate of the temperature 
dependence of the species migration-velocity profile to be determined. Furthermore. 
it is clear that there is always one region (the terminator) where the heat generation 
is a maximum and this region is not a sample region. Thus, if the maximum design 
temperature is specified in this region. there will be no danger of the sample species 
becoming overheated. Present calculations permit the determination of the time taken 
to reach maximum design temperature and the corresponding maximum electric 
field strength. 

Assumption I will certainly be valid in gels, and because we are considering 
applications for manufacturing in space where operation will occur in a gravity-free 

. environment, it should also be valid in free solution provided electroconvective 
effects may be neglected. Preliminary investigations in Skylab indicate that this may 
not be a major factor. 

In view of assumption 2 the present results will not apply to any system using 
a free solution with counterflow. 

Assumption 3 has been checked by comparing the “exact” steady-state con- 
stant-properties solution with the results of a steady-state perturbation analysis which 
permits variation in the thermal properties with temperature. It appears that the effect 
of neglecting thermal-property variations is very small and that the results of a con- 
stant-property analysis are conservative. Details of this particular point are discussed 
in the Appendix. 

PREVIOUS WORK 

Martin and Everaerts’ have considered a steady-state analysis under the as- 
sumptions of constant thermal and electrical conductivity and specific heat. They 
obtain an expression for the difference between the temperature at the center of the 
column and that at any radius r. This temperature distribution is parabolic and ne- 
glects the effects of column wall thickness, Assuming a mobility increase with temper- 
ature of 2%/“K, they obtain an expression for the variation of mobility due to this 
radial temperature distribution. 

Konstantinov and 0shurkova2, using the same assumptions as above, obtain 
a similar expression for the difference in temperature between a point at radius r 
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and the inside column wall. Using the 2%/“K mobility variation with temperature 
they arrive at an expression for the velocity variation across the column. 

Hjerten3, considering free zone electrophoresis, makes the same assumptions 
as in the above two cases, and also imposes the condition that the temperature vari- 
ation across the column be much smaller than the cooling-bath temperature and thus 
obtains a parabolic velocity profile. He states that the migration-velocity profile in’a 
temperature gradient is determined almost entirely by the temperature variation of 
viscosity, and suggests the use of a counterflow of buffer to flatten curved zones. 

Routs4, basing his observations on the work of Hjerten, notes that, because 
electrical conductivity decreases from the leading electrolyte to the terminator, the 
boundaries of the zones near the. terminator will be more curved than the boundaries 
of the high-conductivity zones. He further states that the only way to straighten the 
fronts is to reduce the field strength because the use of counterflow to restore the 
boundaries of the terminating zones includes the danger of destroying the straighter 
fronts of the leading ion zones. 

Brown and Hinckley§ consider a linear variation of electrical conductivity 
with temperature and include the effects of the presence of a finite wall thickness and 
thus obtain expressions for the temperature profiles in the electrolyte solution and in 
the column wall for the steady-state condition, based on a constant-temperature 
boundary condition on the outside wall. 

STATEMENT OF THE PROBLEM 

Mathematically the problem may be stated as follows: 

Tl = T2 at r = RI, t > 0 

k w 
lay= k aT2 2 ar - at r = RI, 1 > 0 

Tr finite at r = 0. 

a7’2 
k2~+jz(T2-T,)=Oatr=R2,r>0 c 

T2 = Ta in RI < r ,( R2, t = 0. 

We introduce the dimensionless variables 
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and assume that 

QC= Q,,(l + no) =JE2cr=JE2a,,(l + a@ ’ 

where the heat generation per unit volume and the electrical conductivity are denoted 
by Q0 and q,, respectively, when evaluated at 0 = 0. 

We also denote 

s = PO@ 
ki Ten 

It R2 
Y”k 

2 

El = J&/R2 

Then the statement of the problem in dimensionless variables is: 

O1 finite at E = 0 

ae2 
T+ yO,=OatE= 1. 

O1 = 0 in 0 < E < El, 

O,=OinE, <i< 1, 

This problem is split 

t=O 

t=O 

into steady-state and transient parts by writing . 

w,t) = ew + ew) 

Steady-state problem 

f$ (a%) = -S(l + CcOi), 0 < E < El 

$$ (5%) =o, &GE’1 

e:=0;atE=6r;0:finiteatE=0 
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k do: 
-z--= 

,c dG 
2-pltE =E, 

dO; 
T + yo; = 0 at E = 1 

The solutions are 

0; = A, JIJ (/3&) - i a, p2=aS 

where 

l 

0: finite at E = 0 

ao: 
F+&==Oatt= 1,t =;O 

0: = -0s in 0 & E < C1, z = 0 

0; = -0: in g, < E < 1, t = 0 

This problem is solved by the method of Tittle6. 
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We see-k a solution of the form 

0: (& t) = 5 A, X,,, e-%@XT in region j; j = 1,2. 
fl=l 

It is easily shown that for region 1 we must have 

X,, (6) = JO (4” E) 

where A:,, = f9 t & and PI. are the eigenvalues and al = 1. Similarly, for region 
2 we obtain 

X,, = & [JO (Szn E) + C, YO (B,, 01 
and a2 = K2/KL. 

The eigenva? es &, are related to PI. by 
\ 

I% = a2 I%. 

The boundary condition at E = 1 leads to 

YJO (Bzn) - Pzn JI (Pzn) cm = Pzn y, (Pzn) - YYO (PZ”) 

Then equating 0: and 0: at E = 61 gives 

Finally, equating kl a~ = k ao: 
- 

2 a8 
at C: = CI gives 

as the transcendental equation to be solved for the eigenvalues p,. (or fir,). 
The coeqicients A, are then given by 

The various integrations may be performed giving: 

- PJo (An Ed JI Wdl 
” 1 

s [-O;] X2, Ed6 = $+ [JI (P2J - 61 J, </32m Ed + Cn {VI t/92.) - 

et Ln 

- Jo Qlzn EM - A2 p”:. Cm k---El In EI,TI (I%~&) + $-- {Y” (P2,J - yo (Pt. A>)1 
2n 

i’ 
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. 

s “at’; Ed5 = 
0 

RESULTS AND DISCUSSION 

Numerical calculations were performed on the CDC-6400 computer at the 
University of Arizona Computer Center. Figs. 1-3 show centerline transient temper- 
ature response for various heating rates for three different values of the wall-thick- 
ness parameter EI. In each case. the dimensionless heat-transfer coefficient, y, is 
equal to infinity (corresponding to a constant outer wall temperature). Table I lists 
the values of the properties used in making these calculations. For a cooling-bath 
temperature of 0°C and a maximum allowable tebperature in the column of 37°C. 
we find the maximum allowable value of 0 to be 0.1355. This maximum allowable 
value of 0 is denoted 0,. 

An inspection of Figs. 1-3 shows that for a given value of 5,, there will be some 
value of S below which 0, will never be exceeded and above which 0, will always be 

r.=9 7.0 E-0 E.= if 7=-J b-0 

Fig. I. Ccnterline transient temperature response for & = 2!3, Y = 00. 
Fig. 2. Centerline transient temperature response for 61 = 4/k Y = 00. 
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t.=ib I=_ LEO 

Fig, 3. Centerline transient tcmpcrature response for $, = g/IO, y = 0~. 

exceeded in some finite amount of time. We term this value of S for which 0, is ap- 
proached asymptotically S,,,,,., and its variation with [I is shown in Fig. 4. 

For the sake of comparison, Fig. 5 shows centerline transient temperature 
response for a value of the dimensionless heat-transfer coefftcient equal to unity. It 
is clear from this figure that effective cooling is extremely important if one is to use 
high enough electric field strengths to give acceptable resolution while refraining from 
“cooking” the sample. 

Because the electric field decreases in going from terminator to leader elec- 
trolyte zones, Swill also decrease from terminator to leader. Fig. 6 depicts the steady- 
state temperature profile for various values of S. Because ionic mobility is propor- 
tional to temperature, this leads to velocity profiles that become progressively less 
“bowed” from terminator to leader zones. 

Fig. 7 shows steady-state temperature distributions for various values of El 
with the heating rate in each case equal to S,.,,,,.. This figure demonstrates the ad- 
vantage of thick-walled columns as the total temperature drop within the column 

TABLE I 

DATA USED FOR CALCULATIONS 
--... _-.___ __.. _._ ,_ ..-. _ ._.. __. ..__.__.___ ______ 
Parameter Value 
---....-..- --- ..- ._._...._ ~. .- _--. . . . .._ 
ki 13.9*10’4 caI~cm-l~sec-*~“K-* 
kz 26.7. 10e4 cal*cm-l*sec-l. “K-I 
Kl 14.779. 10m4 cm2/sec 
K2 59.333. IO-’ cm2/sec 

, “___.. __.__. 7*75 -_-_- . . . -_-- .._..-_..... -.. .-.-. -._- -..-._ 
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Fig. 4. 

Fig. 5. 

if, g.= % 7 =l.O g=o 

Variation of maximum heating rate with wall-thickness parameter, Y = 00. 

Centerline transient temperature response for El = 4/S. y = 1. 
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Fig. 6. Steady-state temperature pFofiles based on 
with temperature, El = 0.8. y = y 

7 

a linear variation of electrical conductivity 
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E,=& 
c ~0.3412 

002 

t 

Fig. 7. Steady-state temperature brofiles for S = S,,,.,.. 

(and hence velocity variation or “bowing” effect) is seen to increase considerably 
with decreasing wall thickness. 

Jt is interesting to compziSthe present analysis with the parabolic tempera- 
ture distributions predicted by previous investigators. The results of Konstantinov 
and Oshurkovar may be written, in terms of our nomenclature. as 

The above equation is shown plotted in Fig. 8. Comparison with Fig. 6 shows that 
the parabolic distribution tends to underpredict the temperature, the discrepancy 
increasing with increasjng heating rate. At a value of S equal to 0.4, Fig. 8 predicts 
that the maximum value of 0 will be 26.2% less than 0,. From Fig. 6, however, it is 
seen that at S = 0.4. the maximum value of 0 is actually 6% greater than 0,. Thus a 
design based on a parabolic temperature distribution could lead one to believe that 
a large margin of safety exists with respect to preserving living cells, whereas the actual 
teni&rature rise would surely be destructive to such cells. 

Because the sharpness of ionic interfaces increases with increasing electric 
field strength’, it may be desirable to operate at values of S greater than S,,,,,.. This 
requires that E and RI be chosen in such a way that the time required for separation 
be less than the time at which 0, is exceeded. Brouwer and Postemas have presented 
an approximate equation for determining the time required for separation. Assuming 
their optimal condition (conductivity of the terminating zone approaching that of 
the sample solution) and using a mobility difference of 2*10-* cm2.V-‘*sec-‘, an 
adapted sample length of 1 cm. and the data of Table I. their result may be written as 

7, = 0.0052965 +. 
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Fig. 8. Steady-state temperature profiles based on constant electrical conductivity (plotted from results 
given in ref. 2). Comparison with Fig. 6 shows the degree to which results based on constant electrical 
conductivity underpredict the actual temperature distribution. 8, = 0.8. y = 00 

From plots such as those in Figs. 1-3, one can determine for a given E1 the variation 
oft, with S. Then, if one stipulates a value for the ratio t,/t, (thus assuring t. < tc), 
one may determine the variation of ts with S. Using this and the above equation, one 
can determine how E varies with S. Finally, using the definition of S one can 
determine the corresponding values of R2, and hence also I?,, for the given gl. Fig. 9 
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Etvolt_lcm) 
Fig. 9. Variation of internal column radius with electric field for T& = 0.8. This figure clearly 
demonstrates the advantages of thick-walled columns. - 
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shows the variation of RI with E for various values of .$I for a value of r,/t, of 0.8. 
Again the advantage of thick-walled columns can be seen. For a given internal wall 
radius. the use of thicker-walled columns a1low.s larger values of electric field strength 
to be used, thus increasing resolution. On the other hand, for a given value of electric 
field strength, thicker-walled columns allow the use of larger internal radii. This fact 
is particularly important for preparative electrophoresis. 

CONCLUSION 

The present analysis, based on a linear variation of electrical conductivity 
with temperature and taking into account the effects of a finite wall thickness, is seen 
to be a major improvement over previous analyses, which predict parabolic temper- 
ature distributions. Previous analyses are seen to underpredict considerably the actual 
temperature variation in the isotachophoretic column, leading to the possibility of 
designs allowing temperature rises hazardous to living cells. It was shown that for 
higher resolution, operation at values of S greater than S,,,,,. might be desirable, 
thus necessitating the solution to the transient problem presented here. It was also 
shown to be advantageous to use thick-walled columns both from the point of view 
of higher resolution and of increased production. 
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APPENDIX 

COMPARISON OF “EXACT” SOLUTION OF STEADY-STATE TEMPERATURE DISTRI- 
BUTION ASSUMING CONSTANT THERMAL PROPERTIES WITH A STEADY-STATE 
PERTURBATION SOLUTION PERMITTING LINEAR TEMPERATURE DEPENDENCE 
OF THERMAL PROPERTIES 

(I) The constant-properties solution 
The solution of the steady-state problem assuming cohstant thermal properties 

(density, specific heat, and thermal conductivity) has been given. For the special case 
where TZ = T, at I’ = R2 we have : 

0; = Jo (I%) 1 -- 

a [ JO (/XI) + $- t P& 4 <PEd In &] a : 
from which the maximum temperature, at E = 0, is 
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For the purposes of obtaining a numerical comparison with the perturbation 
solution given below we have chosen the following values for the parameters in- 
volved : Er = 2/3 ; a = 7.75 ; O;,,, = 0.1355; kI = 13.9*10-4 cal*cm-l.sec-l*“K-l; 
k2 = 26.7. 10V4 cal~cm-l~sec-‘~“K-*. 

The values of kl and k2 are average values for the range of 0” considered, i.e. 
0 < 0” < 0; , 

Solviri’for p = l/aS then gives a value for the maximum permissible value 
of the dimensionless heat source strength S. 

We find that S,.,,,,. = 0.480. 

(2) Perturbariou solution for the steady-state problem 
The statement of the problem in terms of the dimensionless variables is: 

1 d d0; -- 
E dE [ 

4(1 + p, o;,& = -S(l + C-CO;), 0 G 6 GE1 

where now 

k, = h-,0 (1 + PI 0;) 

A-2 = /cx,(l + PzO;) 

and klo, k2,, are the values of kl, k2 at Oq,, = 0. 
Boundary conditions are taken to be 

Oz=OatC;‘= I 

0: = 0: at 6 = EL 

and the temperature at 6 = 0 must be finite. 
We proceed by assuming that 0 can be expanded in terms of a power series in 

the dimensionless source strength S. 

o,“(F;S)-sf,(E)+S~f,(~)+S3f;(~)+ . . . . 0<5<& 

OZ(E; S) N Srpo(E) + S2(p, (E)$_ S3(pz(E) + . . ., & GE < 1. 

The obvious procedural steps are not reproduced here; instead we shall quote 
the solution of 0: which we require for comparative purposes. 

We obtain the following: 

I% c4 -’ - 64 -I- 41 + . . ., 
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c = ;I0 -y- [(p* - a) (JyL - 22) _ 

- 

- 

k,o 6: 
A=-x--- 20 2 

For G,,,. at E = 0 we then have simply 

.a., Of,,, . = SB1 + S2Dl + . . . 

Numerical calculations assume the same values used in section I except that we 
nowuse:k,o=26~l0~4cal~cm~1~sec~‘~”K~1;k,o=13.19~10’4cal~cm~1~sec”~“K”; 
P2 = 0.42; PI = 0.808. 
We now find a value for S,,,,,.. 

S max. = 0.576 (variable properties). 

This value may be compared directly with that obtained from the perturbation 
scheme by setting PI = p2 = 0 and replacing klo. kzO by the average values for kl, k2 
used in section 1, in which case we get 

S max. = 0.56 1 (constant properties). 

Thus we see that within the perturbation steady state solution, taken to two terms. the 
effect of neglecting thermal property variations leads to a difference of some 2.5% 
in the calculation of S,,,,,.. Furthermore we note that the result obtained by assuming 
constant properties is conservative. 

(3) Comparison with the “exact” solution 
It will be noted that the value of S,,,,,. LO.48 given m section 1 is some 14.5% 

below that obtained from the two-term perturbation method also assuming constant 
properties. This, however, is a result of relatively slow convergence of the pertur- 
bation expansion. We have continued the expansion to three terms (assuming constant 
properties) and then obtain S,,,,,. = 0.51, which is only 6% higher than the “exact” 
solution. We conclude therefore that the error in neglectingsthe thermal properties 
dependence on temperature is justified and is probably less than 3% in view of the 
comparisons made within the perturbation solutions. Moreover, the “exact” constant- 
properties solution gives a conservative answer and is therefore safe for design calcu- 
lations. 
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LIST OF SYMBOLS 

J, 

K 
k 

QE? 
r 

fG 
& 
S 
T 
t 
YO 

a 

Subscripts 
1 

2 
co 

Superscripts 
s 
t 

Meaning 
Specific heat 
Electric field 
Heat-transfer coeefficient 

. 

Mechanical equivalent of heat 
Bessel function of the first kind of order 

zero 
Bessel function of the first kind of order 

one 
Thermal diffusivity 
Thermal conductivity 
Heat generation per unit volume 
Radial distance 
Internal radius of column 
External radius of column 
Dimensionless heating rate 
Temperature 
Time 
Bessel function of the second kind of 

order zero 
Bessel function of the second kind of 

order one 
Dimensionless coefficient of electrical 

conductivity 
Dimensionless heat-transfer coefficient 
Dimensionless temperature 
Dimensionless radial distance 
Dimensionless wall-thickness parameter 
Mass density 
Electrical conductivity 
Dimensionless time 
Dimensionless time required to reach 0, 
Dimensionless time required for 

separation 

Refers to properties of the electrolyte 
solution. 

Refers to properties of the column wall. 
Refers to properties of the cooling bath 

surrounding the isotachophoresis 
column. 

Refers to steady-state conditions. 
Refers to transient conditions. 

Unit 
Cal-g -l."K-I 

V/cm 
cal-cm-2-sec-1~“K-1 
Cal/J 

cm2/sec 
cal-cm-l-sec-‘-“K-’ 
cal.cm-3*sec-’ 
cm 
cm 
cm 

“K 
set 

g/cm3 
$2’ -cm-’ 
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